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Outline

Ø Introduction to Common Data Science Methods

Ø Example with Simulated Data

Ø MLDS Application
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Data Science & Machine Learning

Ø Data science is the intersection 
of computer science, statistics 
and a content area

Ø Machine Learning (ML) focuses 
on building computer 
algorithms that learn from data

Ø The algorithms are fine-tuned 
and then applied to data 
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General Idea
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Common ML Output Types
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Two Main Approaches
Supervised Learning

Ø Labeled datasets

Ø Outcome Y

Ø p predictors X

Ø When Y is quantitative à
regression problem

Ø When Y is categorical à
classification problem

Unsupervised Learning

Ø Unlabeled datasets

Ø No outcome variable

Ø Discover hidden patterns 
in data 

Ø Three main tasks: 
clustering, association 
and dimensionality 
reduction
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Simulated Data Example 
Ø Predicting graduate school admissions given a set of 

student characteristics

Ø Sample of 500 students

Ø Classification problem 

Ø Supervised Learning 
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Variables in Simulated Data 

Ø Admitted to Grad School (either 0 or 1 )

Ø GRE Scores ( out of 340 )
Ø TOEFL Scores ( out of 120 )
Ø University Rating ( out of 5 )
Ø Statement of Purpose ( out of 5 )
Ø Letter of Recommendation Strength ( out of 5 )
Ø Undergraduate College GPA ( out of 4 )
Ø Research Experience ( either 0 or 1 )
Ø Male ( either 0 or 1 )
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Outcome

Predictors



Snapshot of the Simulated Dataset
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*note this is not real data



Training vs Testing

Ø Training Set: The sample of data used to fit the model

Ø Testing Set: The sample of data used to provide an 
unbiased evaluation of a final model fit on the 
training dataset
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Training and Testing Sets for Grad 
Admission
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80% of full sample
400 students

20% of full sample
100 students

Full Graduate Admission Dataset



K-fold Cross Validation
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Tuning Parameters

Test Data



5-fold Cross Validation for Grad Admission
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N=500

N=400 N=100

Find our tuning parameters

Final evaluation to determine accuracy on test data

N=80           N=80           N=80           N=80         N=80
Leave out

Test Data



Model Evaluation
Ø Accuracy: a measure of how well the machine 

learning model performs 

Ø Continuous Y: Mean Squared Error
Ø Categorical Y: Misclassification Rate
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Example Confusion Matrix for 
Grad Admission
Ø Random Forest
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Confusion Matrix Truth

Not Admitted Admitted

Prediction
Not Admitted 55 10

Admitted 5 30

Accuracy:
( 55 + 30 ) / 100 = 85%



Bias - Variance Tradeoff

Ø Bias is the inability of a model to learn enough about the 
relationship between the predictors X and the response Y.
It quantifies how much on an average the predicted values 
differ from the actual value

Ø Variance quantifies a model’s tendency to learn too 
much about the relationship that’s implied by the training 
dataset. It represents a model’s lack of consistency across 
different datasets
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Bias - Variance Tradeoff
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Some Common Methods
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Machine Learning Algorithms
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Characteristics ML Algorithm Tuning

Without dimension reduction

Modal Classification
Multiple Linear Regression
Logistic regression
k-Nearest Neighbor (kNN)

None
None
None
Number of neighbors

Dimension reduction with penalty Lasso Shrinkage/ penalty

Tree based, non-linear relationship Classification/Regression Trees
Random forest

Tree depth/ pruning
Number and depth of trees

Non-linear decision surface Support vector machine
Neural network

Kernels
Depth of neurons

Ensemble of many algorithms Super learner (SL) Weights



Modal Classification for Grad Admission
Ø Baseline Measure for Comparison
Ø Majority Rule

19

0                      1 0                      1



Modal Classification for Grad Admission
Ø 60% Accuracy
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0                      1 0                      1



Logistic Regression

Ø The outcome of interest is a dichotomous variable 

Ø Predictions are made using the formula:

Ø Can be generalized  to more than two classes by using a linear 
function for each class

Ø A simple approach to supervised learning but assumes linearity 
(which often isn’t the truth)

Ø Linear models are easy to interpret
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Logistic Regression for Grad 
Admission
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Logistic Regression for Grad 
Admission
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Confusion Matrix Truth

Not Admitted Admitted

Prediction
Not Admitted 55 11

Admitted 5 29

Accuracy:
( 55 + 29 ) / 100 = 84%



Lasso Regression

Ø Variable selection method that shrinks the coefficient 
estimates towards zero based on a penalty (tuning) 
parameter 𝜆

Ø Selecting a good value of 𝜆 for the lasso is critical; 
cross-validation is again the method of choice

Ø Produces a model that can include only a subset of 
the predictor variables which reduces the model 
complexity and helps avoid over-fitting to the data
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Lasso for Grad Admission
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Lasso for Grad Admission
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Lasso for Grad Admission
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Lasso for Grad Admission
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Lasso for Grad Admission
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Confusion Matrix Truth

Not Admitted Admitted

Prediction
Not Admitted 57 13

Admitted 3 27

Accuracy:
( 57 + 27 ) / 100 = 84%



Decision Trees

Ø Classification or Regression
Ø Nonparametric models built in the form of a tree 

structure by stratifying or segmenting the predictor 
space into several simple regions

Ø Complexity (tuning) Parameter 𝛼
Ø Within each final node, the predicted value is either 

the modal value/class of the outcome (Classification) 
or the mean of the outcome variable for observations 
in the node (Regression)

Ø Easy to interpret
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Decision Tree Process
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Decision Tree for Grad Admission
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Decision Tree for Grad Admission
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Confusion Matrix Truth

Not Admitted Admitted

Prediction
Not Admitted 55 12

Admitted 5 28

Accuracy:
( 55 + 29 ) / 100 = 83%



Random Forest
Ø Used for Classification or Regression
Ø An ensemble classifier which combines the results of 

many decision tree models built on bootstrapped 
samples using a random sample of the predictors at 
each split
Ø A selection of m predictors is taken at each split 

(typically 𝑚 ≈ √𝑝 )
Ø This process decorrelates the trees which reduces the 

variance
Ø Need to select the number of trees
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Random Forest for Grad Admission 
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Random Forest for Grad Admission 
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Confusion Matrix Truth

Not Admitted Admitted

Prediction
Not Admitted 55 10

Admitted 5 30

Accuracy:
( 55 + 30 ) / 100 = 85%



MLDS Application
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Future Data Science Projects
Ø ML Prediction

Ø Can we reasonably predict 
student success variables?

Ø Do machine learning 
algorithms more accurately 
predict these outcomes over 
other methods?
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Ø For What Purpose?

Ø Missing data: Absent 
students and/or years where 
certain assessments were 
not used 

Ø To examine the effects of 
local school system or state 
policies on student success



Creating a Dataset
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All students in 
Grade A

• Identifying a particular 
cohort (Grade A in Year 2016)

Students who 
took Test X

• All students who took the test in 
previous years

Identifying the 
test score 

• Which score to use?

Selecting 
covariates

• Missingness vs 
representation



Nested Data is Common in 
Education
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10-40 Students per Class

5-100s of Classes per School

5-209 Schools per System

24 Local School Systems

1 State State of 
Maryland

Anne Arundel 
County Baltimore City

Prince 
George's 
County

Paint Branch 
Elementary

Cesar Chavez 
Elementary

University 
Park 

Elementary

Kindergarten 
1

Student 1 Student 2 Student 3 Student 4 Student 5

Kindergarten 
2

Kindergarten 
3

Kindergarten 
4

Berwyn 
Heights 

Elementary



Nested Data is Common in 
Education
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10-40 Students per Class

5-100s of Classes per School

5-209 Schools per System

24 Local School Systems

1 State State of 
Maryland

Anne Arundel 
County Baltimore City

Prince 
George's 
County

Paint Branch 
Elementary

Cesar Chavez 
Elementary

University 
Park 

Elementary

Kindergarten 
1

Student 1 Student 2 Student 3 Student 4 Student 5

Kindergarten 
2

Kindergarten 
3

Kindergarten 
4

Berwyn 
Heights 

Elementary

• With existing MLDS classroom, 
school, and local school system 
covariates, can the nested data 
structure be ignored?

• Do ML algorithms do better than 
parametric models in terms of 
prediction accuracy?



Some Preliminary Results
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Considerations When Applying to 
MLDS Data
Ø Are all types of students being classified 

equally well?
Ø Which groups of students are being 

classified better? Which groups are worse? 
Ø Race
Ø Gender
Ø Grade
Ø ELL
Ø FARMS
Ø Local School System

Ø Does this vary by method?
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Current Data Science Project
Ø Which algorithm is accurately predicting which types 

of students?

Ø Is there a way to leverage high accuracy across all 
groups?

Ø Are these algorithms better than parametric models 
(multilevel logistic regression)?

Ø If we can accurately predict student outcomes, how 
can and should these predictions be used to support 
students?
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Thank you!
Questions?

Ø Tracy Sweet;  tsweet@umd.edu
Ø Brennan Register;  brr@umd.edu
Ø Patrick Sheehan;  psheehan@umd.edu
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